דילוג לתוכן ראשי

קורסים

  • משוואות דיפ' רגילות (90914)
  • תקציר הקורס:

    תקציר:

    מיון משוואות דיפרנציאליות. משוואות דיפרנציאליות מסדר ראשון. משוואות דיפרנציאליות לינאריות מסדר n: משוואה הומוגנית ואי-הומוגנית, Wronskian משוואות הומוגניות עם מקדמים קבועים.

    הפרדה לבעיה הומוגנית ואי-הומוגנית, שיטת המקדמים הלא ידועים ושיטת וריאצית פרמטרים.

    בעיות שפה – תורת Sturm Liouville : הגדרת אופרטור צמוד לעצמו, מציאת ערכים עצמיים ופנקציות עצמיות של האופרטור והוכחת תכונותיהן.

    מערכת של משוואות דיפרנציאליות לינאריות מסדר 1:

    פתרון המערכת ההומוגנית באמצעות ערכים עצמיים ווקטורים עצמיים של המטריצה.

    ה- Wronskian של המערכת. המערכת האי-הומוגנית.
  • אנליזה נומרית (90925)
  • תקציר הקורס:

    תקציר:

    אינטרפולציה: שיטות לגרנז' וניוטון, אינטרפולציה הרמיטית, ספליין.

    גזירה נומרית. אינטגרציה נומרית: שיטת הטרפז, סימפסון ונקודת האמצע.

    שיטות האינטגרציה לפי גאוס. קירוב ריבועים מינימליים. קירוב לפתרון משוואה דיפרנציאלית: שיטות טיילור,הון ורונגה קוטה, שיטות סתומות.

    קירוב לפתרון משוואה לא ליניארית ,שיטת החצייה, שיטת ניוטון-רפסון , מיתר ושיטות איטרטיביות של נקודת השבת.

    קירוב לפתרון מערכת משוואות ליניארית: שיטת הדירוג של גאוס, מוצגות של מטריצה, שיטות איטרטיביות ופירוק LU.