דילוג לתוכן ראשי

קורסים

  • חשבון דיפרנציאלי אי (90901)
  • תקציר הקורס:

    תקציר:

    המספרים הממשיים. פונקציות. סדרות. גבול של סדרה. גבולות ורציפות. משפט ערכי הביניים ומשפט Weierstrass . הנגזרת וחשבון נגזרות.

    משפט Fermat, משפט Rolle, משפט Lagrange, כלל l'Hopital. שימושים: עליה וירידה, קודות קיצון, קמירות, קעירות ונקודת פיתול. נוסחת Taylor עם שארית Lagrange.

    חקירת פונקציות. אינטגרל לא מסוים ואינטגרל מסוים ׁׁ(אינטגרל Riemann). המשפט היסודי של החשבון האינטגרלי ונוסחת Newton-Leibniz. שיטות אינטגרציה. אינטגרל לא אמיתי, קריטריוני השוואה.
  • חשבון דיפרנציאלי אי (90902)
  • תקציר הקורס:

    תקציר:

    טורים. טורי חזקות. פונקציות של מס' משתנים. גבולות ורציפות.

    נגזרת חלקית ומכוונת. קירובים ליניאריים. גרדיאנט. כלל השרשרת.

    נגזרות חלקיות מסדר שני, קירוב ריבועי ופולינום Taylor של פונקציות של מס' משתנים.

    נקודות קיצון מקומיים/מוחלטים. כופלי Lagrange. אינטגרלים מרובים. משפט Fubini.

    החלפת משתנים ויעקוביאן (Jacobi). אינטגרלים קווים ומשטחיים. אי-תלות אינטגרל קווי במסילה ומשפט Green.

    משפט Gauss-Ostrogradski ומשפט Stokes.
  • משוואות דיפ' רגילות (90914)
  • תקציר הקורס:

    תקציר:

    מיון משוואות דיפרנציאליות. משוואות דיפרנציאליות מסדר ראשון. משוואות דיפרנציאליות לינאריות מסדר n: משוואה הומוגנית ואי-הומוגנית, Wronskian משוואות הומוגניות עם מקדמים קבועים.

    הפרדה לבעיה הומוגנית ואי-הומוגנית, שיטת המקדמים הלא ידועים ושיטת וריאצית פרמטרים.

    בעיות שפה – תורת Sturm Liouville : הגדרת אופרטור צמוד לעצמו, מציאת ערכים עצמיים ופנקציות עצמיות של האופרטור והוכחת תכונותיהן.

    מערכת של משוואות דיפרנציאליות לינאריות מסדר 1:

    פתרון המערכת ההומוגנית באמצעות ערכים עצמיים ווקטורים עצמיים של המטריצה.

    ה- Wronskian של המערכת. המערכת האי-הומוגנית.